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Video Models’ 1 year birthday

" Luma Al %

Introducing Dream Machine - a next generation video model for creating
high quality, realistic shots from text instructions and images using Al.
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Native Multi-Modal Generation

The current “hype”

Prompt: <img> While chameleons are masters of camouflage in the natural
world, let’s see how they might fare in a man-made setting.
exan 1. Analyze the colors, patterns, and textures in this image and identify the
.‘J—n, il most challenging spot for a chameleon to blend in.
- i 2. Then generate an image of a chameleon with the optimal pattern to
r camouflage itsell.
3. Then, rate and explain how successful each attempt is on a scale from 1-10.

Response: The image iz of a stop sign in a forested area, with some sunlight filtering through the trees,
The sign has a red octagonal shape with a white border and the word "STOP" written in white letters.

In the background, there are green leaves and trees.

Challenging Spot for a Chameleon: The stop sign would be the most challenging spot for a chameleon
to blend in due to its bright red color and bold white letters, which would stand out in the forested
environment.

Optimal Pattern for Camouflage: To camouflage itself on the stop sign, a chameleon would need
to have a pattern that would break up its cutline and make it less conspicuous. A pattern with shades
of brown and red would help the chameleon blend in more effectively.
Additionally, a mottled or dappled pattern would help to scatter

light and further reduce the chameleon’s visibility.

<img>

Rating and Explanation: A rating of 2/10 would be given for

the chameleon’s ability to blend in on the stop sign. While the
chameleon’s green and brown pattern helps to break up its outline,

the bright red color of the stop sign will still make it stand out in

the forested environment.

From
- Vision Language Models (Text + Image in, Text out)

To

Diffusion Models (Text + Image in, Image out)

Interleaved Models (Text + Image in, Text + Image out)



A lot of papers in the past year

Text: Di AR
Chameleon: Mixed-Modal Early-Fusion Foundation ext: Discrete

Image: Discrete AR
HOVW-0: ONE SINGLE TRANSFORMER TO UNIFY

Chamy Text: Discrete AR
MU Image: Discrete Diffusion
Jinh Transfusion: Predict the Next Token and o
Kevi Diffuse Images with One Multi-Modal Model Text: Discrete AR

Image: Continuous Diffusion
Unified Multimodal Discrete Diffusion

C Text: Discrete Diffusion
Mich A )exander Swerdlow* Mihir Prabhudesai* Siddharth Gandhi  Image: Discrete Diffusion

Deepak Pathak Katerina Fragkiadaki

All based on combinations of Discrete AR / Discrete Diffusion / Continuous Diffusion etc..



Why not stick to next-token prediction?

txt to video

-\ ./- img tovideo
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Discrete tokens have a quality issue

Original Reconstructed It looks quite different
up close!

*You cannot use this to know
who they are even for
understanding purposes

Emu3: Next-Token Prediction is All You Need




Discrete tokens have a quality issue

Discrete tokens have much worse reconstruction than continuous ones

Discrete
Configurations VisionTokenizer Video Resolution LPIPS] PSNET SSIMT
Pretrained Weights SBER-MoVQGAN-270M’ 128 = 128 0.099 21.71 0.630
Codebook Size 32768 256 = 256 0.109 21.59 0.622 Emu3: Next-Token Prediction is All You Need
Latent Size 4 512 x 512 0112 22.69 0.690
Compression 4w 8wy T20 = T20 0110 24.30 0.771
Table 1: Emu3 vision tokenizer configurations. Table 2: Video compression metrics. https://arxiv.org/abs/2409.18869

Table 1: Ablation with different variants of 3D VAE. The baseline is SDXL(Podell et al., .
2023) 2D VAE. Flickering calculates the L1 difference between each pair of adjacent frames Contl nuous
to evaluate the degree of flickering in the video. We use variant B for pretraining.

Variants | Baseline A B ¢ D - g COGVIDEOX: TEXT-TO-VIDEO DIFFUSION MOD-
CompreSSj.OIl 8><8X1 8><8><4 8><8><4 8><8><4 8><8X8 16)(16)(8 ELS WITH AN EXPERT TRANSFORMER
Latent channel 4 8 16 32 32 128
Flickering] 93.2 87.6 86.3 87.7 87.8 87.3

PSNR? 28.4 27.2 28.7 30.5 29 27.9 https://arxiv.org/abs/2408.06072




Fundamental flaw of discrete tokens

Discrete tokens have to compress a lot more for the same sequence length

8 bit color
i i — * Q * * Q * —
Configurations VisionTokenizer Bit compression=(4*8*8)*3*8/15=409.6
Pretrained Weights  SBER-MoVQGAN-270M° S
Codebook Size 32768 equence. Channels  log2(32768)
Latent Size 4 Compression
Compression 4x8x8

Table 1: Emu3 vision tokenizer configurations.

Bit compression
Table 1: Ablation with different variants of 3D VAE. The baseline is SDXL(Podell et al., _ _
2023) 2D VAE. Flickering calculates the L1 difference between each pair of adjacent frames - (4 * 8 * 8) * 3 * 8 / (1 6 * 8) - 48

to evaluate the degree of flickering in the video. We use variant B for pretraining.

Variants | Baseline A B C D E bfloat16 Latent
Compression | 8x8x1 8x8x4 8x8x4 8x8x4 8x8x8 16x16x8 channels
Latent channel 4 8 16 32 32 128
Flickering) 93.2 87.6 86.3 87.7 87.8 87.3
PSNR1t 28.4 27.2 28.7 30.5 29 27.9

Continuous tokens has much higher quality in the same sequence
length!



Continuous tokens have a speed issue

Forward diffusion process (fixed)

Data Hoise
Reverse denoising process (generative)
Diffusion requires many timesteps to converge
Image/Multi-lmage/Video Clip
L] [ N
Next Token Prediction Velocity Prediction
[ ] | FEN )
| Multi-modal Self Attention |
[ o QKV ]
Und. Expert Gen. Expert
O O 0 O 0O
[ ] [ Und Encoder ] [ Gen Encoder ]

BAGEL: MoT with discrete + continuous tokens



Continuous tokens have a speed issue

While the sequence looks like this

D1 C1 D2 C2

Discrete tokens Continuous signal.
Can be image / video / sound / actions etc...

The compute on the hardware is really like this!

D1 C1 C1 C1 C1 C1
Discrete tokens Continuous tokens requires many passes of the
only requires 1 transformer.
pass of the

transformer




The algorithms are dominated by AR and diffusion...

But none are perfect!



The trilemma of continuous generative models

Training stability

Diffusion Models VAEs, Normalizing

< Flows
Need
_____ - — = something
here!
High quality Efficient
samples t Inference

GANs, Diffusion Distillation



The algorithms are dominated by AR and diffusion...
But none are perfect!

Is there anything that would break the ceiling of the two?
The answer is Yes!



Outline

1. Two axes of inference scaling — sequence and refinement.

2. “Inference-first perspective” for algorithms that scale.

3. Whyis DDIM (and by extension, diffusion) “sub-optimal”.

4. New algorithms and insights from inference-first perspective.



How can we scale at inference-time”?

 Increase the number of tokens
e Don’tincrease the number of tokens



Inference-Time Scaling in Sequence Length

Increases the number of tokens ot

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

* LLM Chain-of-Thought (CoT)

* Col with reasoning data

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

* RL (DeepSeek-R1)
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Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output
» E————— " T eyused

5 |:| | 8. The
Input : thought :

(d) Tree of Thoughts (ToT)
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Inference-time Scaling in Refinement Steps

Does not increase the number of tokens

* Diffusion models / Flow Matching

.
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— SiT-XL [50]

Increasing NFEs in denoising steps

“Hourglass.” (604)
-




Categorizing existing algorithms

* Does not scale in either
* VAE, GAN, Normalizing Flows

* Scale in sequence length, but not in refinement steps
* GPT, PixelCNN, VAR, MaskGiT

* Scale in refinement steps, not in sequence length
* Diffusion models, energy-based models, consistency models

* Scale in both (cont’d)



A lot of algorithms that scale in both axes

* Sequence length in outer loop, refinement steps in inner loop.
* Basically, how most “Autogressive + Diffusion” are done
* MAR
* Diffusion Forcing

_ Noise as Masking
* Discrete LLMs - |

Noise




A lot of algorithms that scale in both axes

* Scale refinement in outer loop, sequence length in inner loop.
* Autoregressive distribution smoothing

Ap@(xﬁ) .lllJH‘h
@ (X axh) @




Scaling efficiency in inference algorithm

Of course, just being able to scale up is not enough!
We also have to scale efficiently!

‘j'T v. b

Infinite monkeys “can” type Shakespeare AlphaGo enabled by how to search more efficiently

(a)



Three positions

1. The right inference algorithm should scale in both axes.

2. Assuming that the model has enough capacity (under universal
approximation theorem), it should use as few steps as possible.

3. Analyze the inference algorithm before the training algorithm!

(Applies to continuous and discrete cases, but will focus on
continuous today)



Application to Continuous Diffusion

1. Therightinference algorithm should scale in both axes. (V)

e Diffusion does scale in the refinement axis.

2. Assuming that the model has enough capacity (under universal
approximation theorem), it should use as few steps as possible. (X)

* DDIM requires multiple steps even when model have infinite capacity!



Application to Continuous Diffusion

What do we want from the "right” inference algorithm?

There exists a solution to the model such that both holds:

1. The inference algorithm generates the right distributionin N
steps (scale correctly)

2. Theinference algorithm generates the right distribution in 1 step
(scale efficiently)

Unfortunately, DDIM is NOT the “right” inference algorithm!



DDIM and the Inference Capacity Issue
DDIM uses the Euler sampler under Flow Matching schedule

 Linearw.r.t. s
* Right distribution in 1 step -> Wrong distribution in N steps



The Fix

* Inject s into the network

* Covers complex solutions
* ODE integration
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Diffusion Models and Flow Matching

* NOT optimal in utilizing network capacity.
dXt = lltdt
* Learns ODE, requiring MANY steps for accurate simulation

* |deal case: optimal use of model capacity / efficient inference-
time scaling

Capabilties

Refinement Steps



Application to Continuous Diffusion

DDIM is NOT the “right” inference algorithm because model only
takes a single timestep!

We can fix it by asking the model to take 2 timesteps!
* Something new in the literature, known as “flow maps”



Analyze inference before training

Once:
many

CONSI:
PROBA

Dongjun K
Sony Al
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Inductive Moment Matching

Lingi Zhou' Stefano Ermon’ Jiaming Song '
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Kaiming He*



Inductive Moment Matching

* Not dependent on denoising score matching / flow matching
* Not dependent on score-based stochastic differential equations
* Solution does not have to be connected to the probabilistic ODE!



Intuition: consistency” in distributions

Data < » Prior
ra . Tak e B B T EF 0 TE T i B T E | RO R e _# 1".""“' s

For timesteps s <r<t, the two distributions should be close:
* Sample from x_t, one step prediction from x_t to x_s.
« Sample from x_r, one step prediction from x_r to x_s.



Intuition: consistency” in distributions

We can simply use Maximum Mean Discrepancy (MMD):
1. Like a GAN, MMD has a “discriminator”
2. Unlike a GAN,

1. MMD uses a special family of discriminators called RKHS.
2. No needto “optimize” the discriminator, so training is stable!



Advantages of IMM

1. Single stage training, single objective function

2. Generalizes consistency models (when comparing distributions
with 1 sample)

3. Quite stable to train
4. Reaches SOTA few step generation

Capabilties

Refinement Steps



Stable Training

* Consistency model
Is a 1-particle
special case

Inductive Moment Matching Consistency Model

* Stable training as
long as >4 particles




Image Generation

e Better than DiT/SiT

* Outperform VAR-d20
(600M param)

Table 1. CIFAR-10 results trained without label conditions.

Family Method D) St ) — E:t_)};dN (Brock, 2018) Flsngfs\L ) Stepls = ﬂl112Ms
i rock, .

DDPM (Ho et al., 2020) 3.17 1000 GAN  GigaGAN (Kang et al.. 2023) 345 1 S60M
DDPM-++ (Song et al., 2020b) 3.16 1000 StyleGAN-XL (Karras et al., 2020) 230 1 166M
NCSN++ (Song et al., 2020b) 238 1000 OGN o o o
Diffusion  DPM-Solver (Lu et al., 2022) 4.70 10 M‘gim_l_(( eretal, 202)2) o v ol
PY I N t 2 5 6 2 5 6 &Flow  iDDPM (Nichol & Dhariwal, 2021) 290 4000 Masked O e "o 0o oo
I I l a e e = X EDM (Karras et al., 2022) 2.05 35 &AR  yAR.420 (Tian et al., 2024a) 257 10 600M

Houf Matching (Ll.lpman et al., 2022) 6.35 142 VAR-d30 (Tian et al., 2024a) 1.92 10 2B
° Rectified Flow (Liu et al., 2022) 258 127 ADM (Dhariwal & Nichol, 2021) 10.94 250 554M

— S e p . ° PD (Salimans & Ho, 2022) 451 2 CDM (Ho et al., 2022b) 4.88 8100 _

2-Rectified Flow (Salimans & Ho, 2022) 4.85 1 SimDiff (Hoogeboom et al., 2023) 2.77 512 2B
DFNO (Zheng et al., 2023) 378 1 LDM-4-G (Rombach et al., 2022) 3.60 250 400M
KD (Luhman & Luhman, 2021) 9.36 1 Diffusion  U-DiT-L (Tian et al., 2024b) 337 250 916M
d O U t p e rfO rl I l VA R - d 3 O TRACT (Berthelot et al., 2023) 332 2 & Flow U-ViT-H (Bao et al., 2023) 2.29 50 501M
Diff-Instruct (Luo et al., 2024a) 557 1 DiT-XL/2 (w = 1.0) (Peebles & Xie, 2023) 9.62 250 675M
Few-Step b1y o pips) (Tee etal.. 2024) 392 1 DIT-XL/2 (w = 1.25) (Peebles & Xie, 2023)  3.22 250 675M
(2 B p a r a m ) via Distillation v ol 2004 377 . DiT-XL/2 (w0 = 1.5) (Peebles & Xie, 2023)  2.27 250 675M
CD (LPIPS) (Song et al., 2023) 203 5 SIT-XL/2 (w = 1.0) (Ma et al., 2024) 9.35 250 675M
£ etal, - SIT-XL/2 (w = 1.5) (Ma et al., 2024) 215 250 675M

CTM (w/ GAN) (Kim et al., 2023) 1.87 2 -
SiD (Zhou et al., 2024) 1.92 1 iCT (Song et al., 2023) 34.24 1 675M
* CIFAR-10 2-step FID: 1.98 ey ! ey w1 O
ortcut (Frans et al., .
[ [ ] sCD (Lu & Song, 2024) 252 2 7.80 4 675M
iCT (Song & Dhariwal, 2023) 283 1 3.80 128 675M
246 2 Few-Ste, | TMM {ours) (XL2, w = 1.25) 7.77 1 675M
ECT (Geng et al., 2024) 3.60 1 P 533 2 675M
g from Scratch

Few-Step 211 2 3.66 4 675M
from Scratch  sCT (Lu & Song, 2024) 2.97 1 271 3 675M
206 2 IMM (ours) (XL2, w = 1.5) 8.05 1 675M
IMM (ours) 3.20 1 ;g‘f i gggx
198 2 1.99 3 675M

Table 2. Class-conditional ImageNet-256x256 results.



Scaling Property
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Advancing Efficiency / Quality Frontier

VQGAN
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The trilemma of continuous generative models

Training stability
Diffusion Models VAEs, Normalizing
Flows

IMM

— = = (and possibly other
flow map methods)

High quality Efficient
samples t Inference

GANs, Diffusion Distillation



Applications to Discrete Diffusion

Consider Masked Diffusion, a performant variant of discrete diffusion

. Maymésaldééééé
©that @ newplan 9 © 9 © ©  ©

500 steps

Mayor €» Bowser said 4> meetings € Commissioner € on

700 steps :
P Thursday that € new plan will be € board in ¢ @ :

850 steps Mayor Bowser said meetings € Commissioner € on :
Thursday that € new plan will be € board in ©

Mayor Muriel Bowser said after meetings with Commissioner Busby on

1000 st . .
weps Thursday that the new plan will be on board in December.

Shi et al., Simplified and Generalized Masked Diffusion for Discrete Data



Applications to Discrete Diffusion

In mask diffusion, value changes only when input is [mask] token.

Algorithm 2 Unconditional and conditional generation (e.g., infilling) with MD4.

Input: Context sequence = of length /V, with masks indicating the target areas for generation
Init: {¢(i)};_, < discretize([0, 1]), (1)  z°
for.=T,T—-1,...,1do
t t(i), s t(z — 1)
(n) (n)

forn € [N], if 2™ =, draw 2. ~ Cat(u,u,é“} (z¢,1) + T=%2¢,,) else 25 — z;

1—exe 1—o

return x.

Suppose seglen = N, and we want to sample in L << N steps:
* Then there is one step that at least samples two tokens!

Shi et al., Simplified and Generalized Masked Diffusion for Discrete Data



Applications to Discrete Diffusion

Does the BERT-style model have “enough capacity”?

Suppose we try to predict:
The list of poker hands that consist of two English words are: [MASK] [MASK]

* Then the valid responses can be: “high card”, two pair”, etc...

* However, BERT samples each [MASK] independently, so it is also possible to
generate “high pair”, “two card” with the model!

* Thisis not an issue with AR models because words are generated one at a time.



Applications to Discrete Diffusion
From the inference-first perspective:
Masked discrete diffusion might have capacity issues when trying to

sample in L << N steps when using the BERT-style model, regardless
how it is trained!



Takeaway

Analyze the inference algorithm before the training algorithm!

e Continuous case: better alternatives to diffusion models
* Discrete case: limitations of the BERT-style diffusion LLM



Inductive Moment Matching:
https://github.com/lumalabs/imm

Inference first position paper:
https://arxiv.org/abs/2503.07/154



https://github.com/lumalabs/imm
https://arxiv.org/abs/2503.07154
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