Physics-Grounded World Models: Generation, Interaction, and Evaluation

Hong-Xing "Koven" Yu

Stanford University

Pixel Generation as World Models: Challenges

World models must understand how worlds evolve under actions, enabling agents to interact meaningfully.

Pixel generation models (e.g., VideoGen) are bottlenecked by:

Precise Action Control

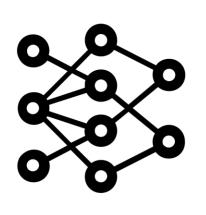
"Push cup to right by 10cm"

X Physical Consistency

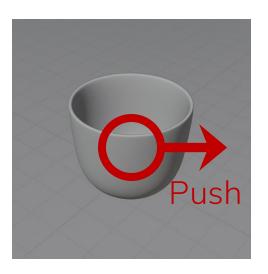
X Efficiency

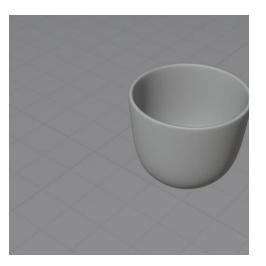
Beyond Scaling: Physics Grounding

Simply scaling up?



Precise Action-Video Data


? Tradeoff: Consistency vs. Efficiency


Key idea: Ground pixel generation onto 3D, physical representations.

Pixel Generation: Realism, Diversity

Physical Representation: Precise Action, Efficient Rendering

Physics-Grounded World Models

Generation

رڪا

Real-time

control

Static 3D World

Interaction

lmage

ige Action

Dynamic 3D World

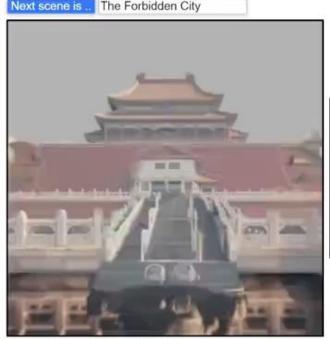
Evaluation

3D/4D/Video World Models

Benchmark

Interactive 3D World Generation

Goal: Fast 3D scene generation following real-time user control of where to generate what contents.



User Control

Input Image

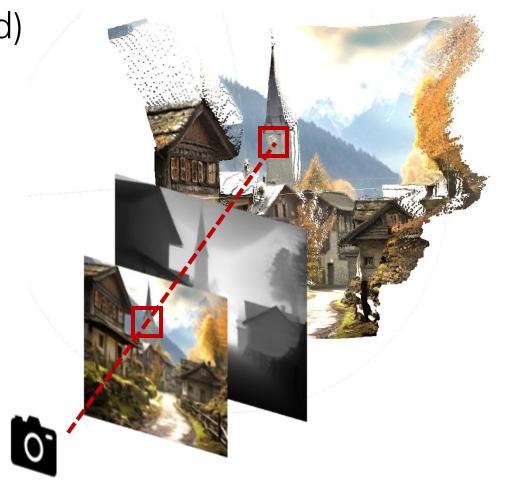
First-Person View

Bird-Eye View of the World

Yu* et.al., WonderWorld, CVPR'25 (Highlight)

3D World Generation via Grounding

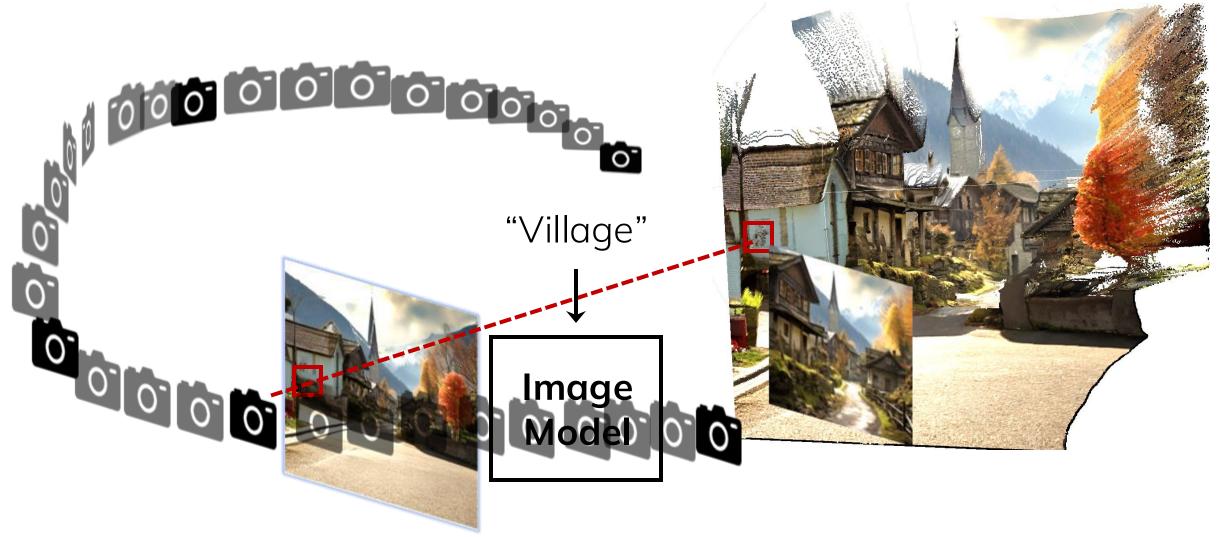
WonderJourney [Yu2024]



RealmDreamer [Shiriram2025]

3D World Generation via Grounding

Use a 3D representation (e.g., point cloud)


Simple Grounding by Unprojection

Unprojection

Yu et.al., WonderJourney, CVPR'24

3D World Generation via Grounding

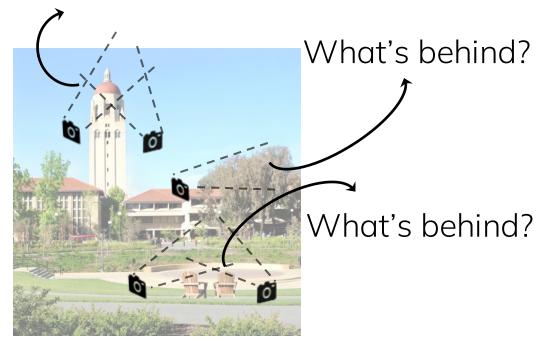
Yu et.al., WonderJourney, CVPR'24

Challenge: Too Slow To Be Interactive

RealmDreamer [Shiriram 2025]	WonderJourney [Yu 2024]	WonderWorld
Hours	749.5s	9.5s

Time Cost to Generate a Scene

- X Many views to generate
- Slow 3D optimization (minutes ~ hours)


Fast Layered Gaussian Surfels (FLAGS): Seconds per scene!

- One view
- Fast optimization (<1s)

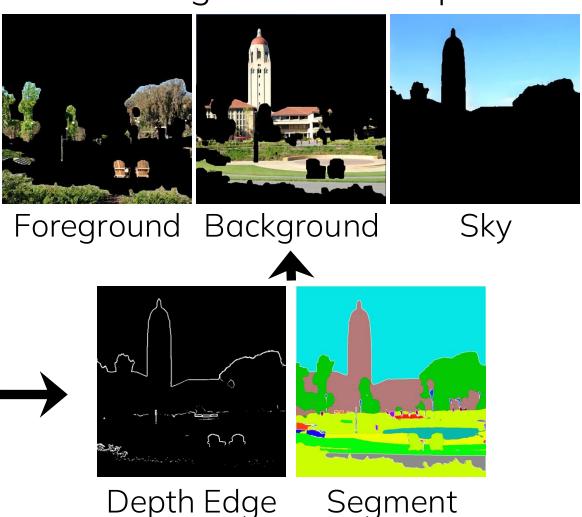
Challenge: Too Slow To Be Interactive

Needs to generate many views

What's behind?

Input Image

• • •



Fast Layered Gaussian Surfels (FLAGS)

Core idea 1: Find occluded regions and complete.

Input Image

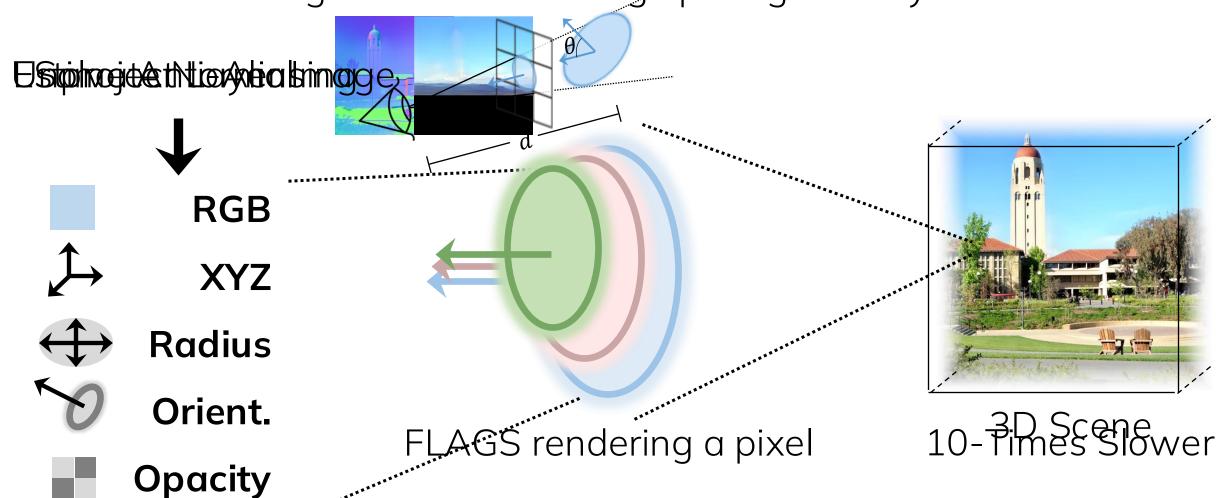
Fast Layered Gaussian Surfels (FLAGS)

Core idea 1: Find occluded regions and complete.

Input Image

Foreground Background

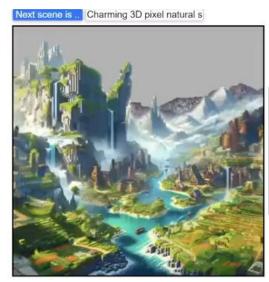
Sky


Completed Layer Images

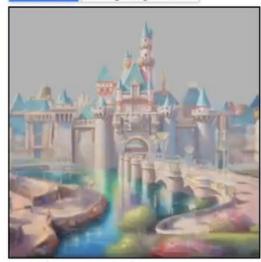
3D Scene

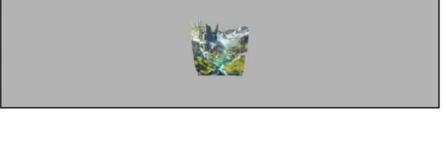
Fast Layered Gaussian Surfels (FLAGS)

Core idea 2: Design surfels to leverage pixel geometry for initialization.



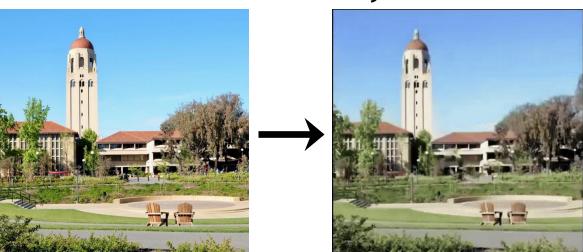
Interactive Generation Process



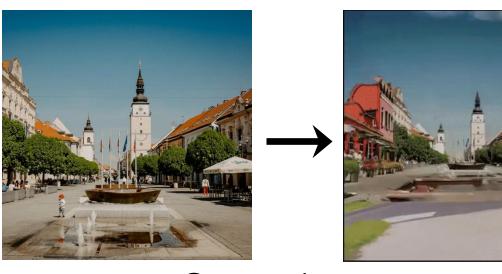

Input Image

Next scene is ... The Magic Kingdom at Walt

First-Person View



Bird-Eye View


Worlds Generated by Different Users

Panorama Layout

Winding Layout

Sector Layout

Straight Layout

Physics-Grounded World Models

Generation

ل<u>ا</u>

Real-time control

Static 3D World

Interaction

Image

Action

Dynamic 3D World

Evaluation

3D/4D/Video World Models

Benchmark

Physics-Grounded World Models

Generation

Image

Real-time control

Static 3D World

Interaction

Image

Action

Dynamic 3D World

Evaluation

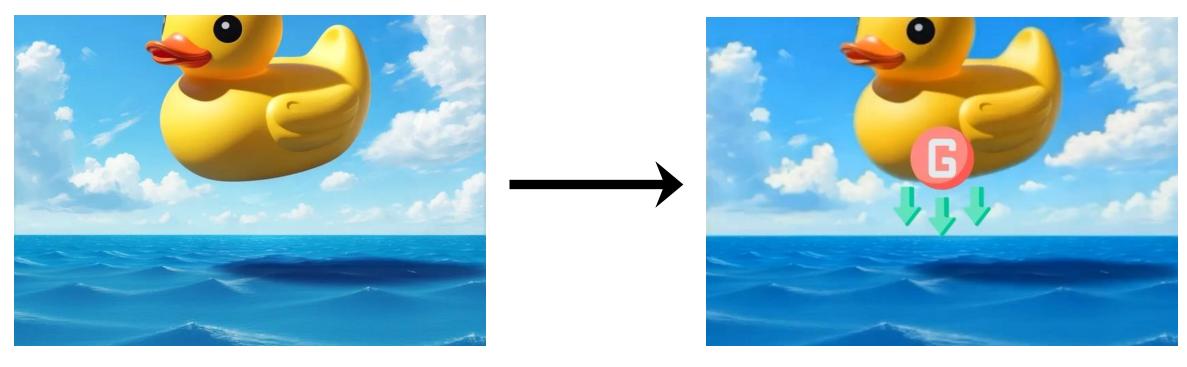
3D/4D/Video World Models

Benchmark

Li*, Yu*, et.al., WonderPlay, Arxiv'25

Li*, Yu*, et.al., WonderPlay, Arxiv'25

Li*, Yu*, et.al., WonderPlay, Arxiv'25


Li*, Yu*, et.al., WonderPlay, Arxiv'25

Li*, Yu*, et.al., WonderPlay, Arxiv'25

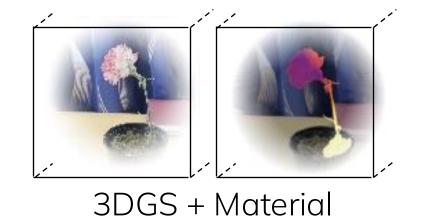
Goal: Predicting physical dynamics of generated scenes under applied 3D actions.

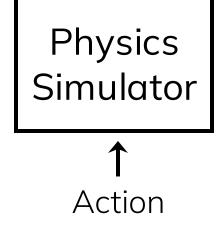
Input Image

Interactive 3D Scene

Li*, Yu*, et.al., WonderPlay, Arxiv'25

Prior Physics-Grounded World Models


Relying on physics simulation to generate future dynamics.



Next state $oldsymbol{x}_{t+1}$

Render

Dynamic Scene

Zhang, Yu, et.al., PhysDreamer, ECCV'24 (Oral)

Challenge: Multi-Physics Simulation is Hard

- Inaccuracy: Multi-physics simulation is not accurate, even with perfect materials.
- Hard to get full physical states from a single image.

WonderPlay (Ours)

PhysDreamer

PhysGen

Video model to improve multi-physics simulation?

Challenge: Video models cannot take actions as input.

{Action, Video} pairs for post-training? Too few.

Core idea: Hybrid model, where simulator predicts action-conditioned dynamics, and video model refines dynamics in-the-loop.

WonderPlay: Hybrid Generative Simulator

Input Image

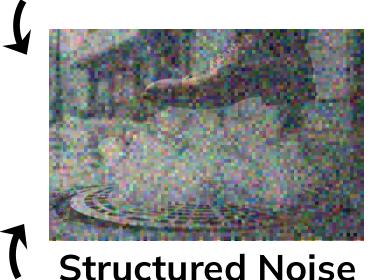
FLAGS

3D Scene

Physics Simulator

Video Generator

Generated Video



Photometric Los

Bimodal Control to Condition Video Gen

Simulated RGB

Video Generator

Refined Simulation

Generated Video

Simulated Motion

Diverse Physics in Interactions

Different Actions

Physics-Grounded World Models

Generation

Image

Real-time control

Static 3D World

Interaction

Image

Action

Dynamic 3D World

Evaluation

3D/4D/Video World Models

Benchmark

Physics-Grounded World Models

Generation

Image

Real-time control

Static 3D World

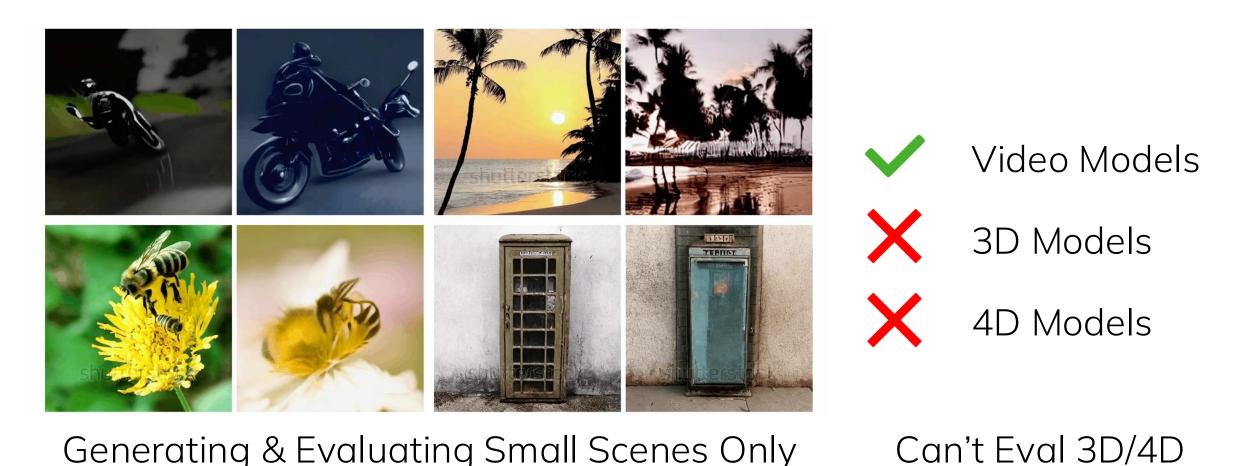
Interaction

Image

Action

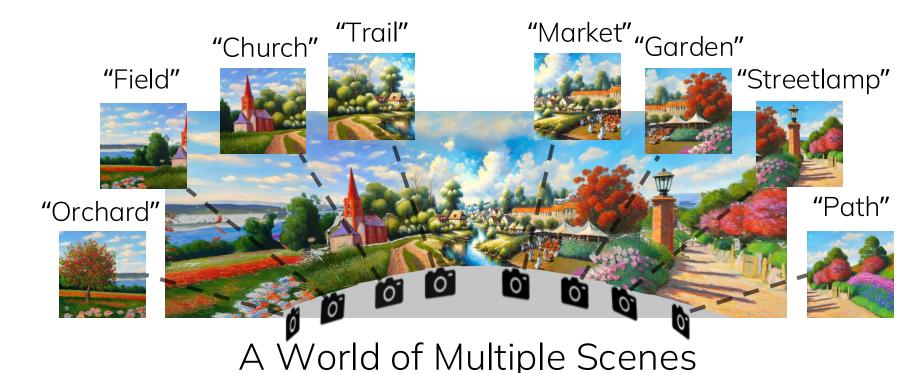
Dynamic 3D World

Evaluation


3D/4D/Video World Models

Benchmark

Existing Eval: Small Scenes, VideoGen Only


Problem: Semantic prompt only. No spatial prompts.

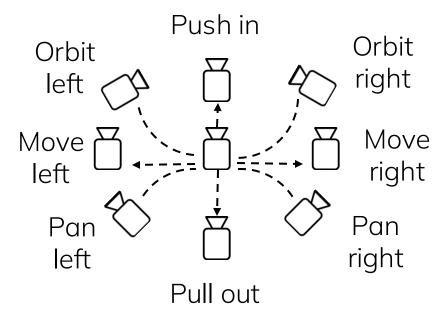
Existing Eval: Small Scenes, VideoGen Only

Existing benchmarks: Semantic prompt ("what"), no spatial prompt ("where").

- A large world requires spatial prompts of each scene.
- 3D/4D models need them as input.

"A tranquil tableau of an ancient... The scene captures a sense of ..."


Semantic Prompt


Challenge 1: Unified World Specification

Problem: Prompt 3D/4D/video models in a unified way.

Key idea: Decompose world generation as a sequence of **next-scene generation** tasks, each described by **semantic and spatial prompts**.

A Generated Example

Spatial Prompt Library

Challenge 2: Camera Motion vs. Scene Motion

Problem: Camera motion (to eval physical consistency) and scene motion (to eval dynamics generation) are entangled.

Key idea: Evaluate dynamics with fixed cameras; evaluate generation with static scenes.

Entangled Motion

Generated Example

Diverse Datasets for Static & Dynamic Worlds

Scene image: Categorization + Extensive data sources + Filtering + VLM captioning **Next-scene prompt**: LLM to generate diverse semantic prompts.

Indoor: **11** Dining Living Passageway **血** Public ₩ Workspace 个 四 25年 Suburb Suburb **Outdoor: M** City Aquatic ** **7** Terrestrial Verdant ■ Rigid body Fluid ** Deformable Multi-motion Motion: ★ Articulated AN SI

WorldScore Metrics

- Camera Controllability
- Object Controllability
- Content Alignment

Quality

- 3D Consistency
- Photometric Consistency
- Style Consistency
- Subjective Quality

Dynamics

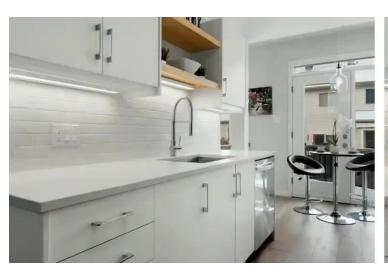
- Motion Accuracy
- Motion Magnitude
- Motion Smoothness

WorldScore Metrics: Controllability

- Camera Controllability
- Object Controllability
- Content Alignment

Lower Score

WorldScore Metrics: Controllability



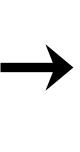
- Camera Controllability
- Object Controllability
- Content Alignment

- Pancakes
- Orange Juice

Higher Score

Lower Score

WorldScore Metrics: Controllability



- Camera Controllability
- Object Controllability
- Content Alignment

"Lockers, trophy, courtyard, fountain, benches ..."

Lower Score

- 3D Consistency
- Photometric Consistency
- Style Consistency
- Subjective Quality

"Seaside dining ..."

Higher Score

Lower Score

- 3D Consistency
- Photometric Consistency
- Style Consistency
- Subjective Quality

"Mountain range, clouds caress the peaks ..."

Higher Score

Lower Score

- 3D Consistency
- Photometric Consistency
- Style Consistency
- Subjective Quality

"Urban Street View ..."

Lower Score

- 3D Consistency
- Photometric Consistency
- Style Consistency
- Subjective Quality

"A bright modern kitchen ..."

Lower Score

WorldScore Metrics: Dynamics

- Motion Accuracy
- Motion Magnitude
- Motion Smoothness

Waterfall plunges, the stream flows ...

Higher Score

Lower Score

WorldScore Metrics: Dynamics

- Motion Accuracy
- Motion Magnitude
- Motion Smoothness

"Octopus glide as waves lap

Higher Score

Lower Score

WorldScore Metrics: Dynamics

- Motion Accuracy
- Motion Magnitude
- Motion Smoothness

"Panda climbs ..."

Higher Score

Lower Score

WorldScore Metrics

	# Examples	Multi-Scene	Unified	Camera Ctrl.	3D Consist.
VBench	800	×	×	×	×
EvalCrafter	700	×	×	×	×
T2V- CompBench	700	×	×	×	×
TC-Bench	150	×	×	×	×
WorldModel Bench	350	×	×	×	×
WorldScore (Ours)	3000		✓		

WorldScore Metrics

WorldScore-Static

WorldScore-Dynamic

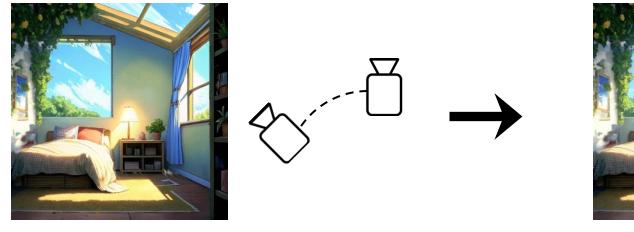
Controllability

- Camera Controllability
- Object Controllability
- Content Alignment

Quality

- 3D Consistency
- Photometric Consistency
- Style Consistency
- Subjective Quality

Dynamics


- Motion Accuracy
- Motion Magnitude
- Motion Smoothness

We evaluate 19 models including video/3D/4D models.

Evaluation: Takeaway Message 1

Message 1: 3D models excel in static world generation.

	CogVideoX-I2V	Vchitect-2.0	LucidDreamer	WonderWorld
WorldScore- Static	62.15	42.28	70.40	72.69

3D Model

Video Model

Evaluation: Takeaway Message 2

Message 2: The best open-source video models are as good as closed-source video models.

	Gen-3	Hailuo	CogVideoX-I2V
WorldScore- Static	60.71	57.55	62.15
WorldScore- Dynamic	57.58	56.36	59.12
Open-Source?	No	No	Yes

Evaluation: Takeaway Message 3

Message 3: Video models are weak in generating larger worlds.

	Gen-3	DynamiCrafter	VideoCrafter1-I2V
Worlds of 2 Scenes	64.71	56.12	58.71
Worlds of 4 Scenes	46.94	37.01	19.83

Low Camera Controllability

Quality Degradation over Time

Physics-Grounded World Models

Generation

Image

ل<u>ا</u>

Real-time

control

Static 3D World

Interaction

Image

Action

Dynamic 3D World

Evaluation

3D/4D/Video World Models

Benchmark

Wonderful Collaborators!

