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Learning Agents in Simulated Environments
Bellemare. Atari. 2012Todorov. MuJoCo. 2012.

Brockman. 2016 Coumans. Pybullet. 2016
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Learning Agents in Multi-Task settings
Bellemare. Atari. 2012

Lee*, Nachum*, Yang, Lee, Freeman, Xu, Guadarrama, Fischer, Jang, Michalewski, Mordatch. Multi-Game Decision 

Transformers. NeurIPS 2022.
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Internet Data and Foundation Models

Veo-2

Genie-2

Video Generation
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This Talk: Scaling World Models for Agents

Building world models
● Datasets and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents

Scaling computation

Scaling data

Scaling feedback 
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Building world models
● Datasets and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents



Video Generation as a World Model
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Background: Concept of a world model (dynamics model) existed a while back

Ha and Schmidhuber. Recurrent World Models Facilitate Policy Evolution. NeurIPS 2018.

Hafner, Lillicrap, Ba, Norouzi. Dream to Control: Learning Behaviors by Latent Imagination. ICLR 2020.

GeneratedGround truth

Previous frames

Control actions
Next 

frames
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Background: Concept of a world model (dynamics model) existed a while back

Question: What is different now?

Ha and Schmidhuber. Recurrent World Models Facilitate Policy Evolution. NeurIPS 2018.

Hafner, Lillicrap, Ba, Norouzi. Dream to Control: Learning Behaviors by Latent Imagination. ICLR 2020.

GeneratedGround truth
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Background: Concept of a world model (dynamics model) existed a while back

Question: What is different now?

● Internet-scale dataset

Ha and Schmidhuber. Recurrent World Models Facilitate Policy Evolution. NeurIPS 2018.

Hafner, Lillicrap, Ba, Norouzi. Dream to Control: Learning Behaviors by Latent Imagination. ICLR 2020.

GeneratedGround truth

Realistic world simulators



Video Generation as a World Model
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Background: Concept of a world model (dynamics model) existed a while back

Question: What is different now?

● Internet-scale dataset

● Scalable video generation architectures

Ha and Schmidhuber. Recurrent World Models Facilitate Policy Evolution. NeurIPS 2018.

Hafner, Lillicrap, Ba, Norouzi. Dream to Control: Learning Behaviors by Latent Imagination. ICLR 2020.

GeneratedGround truth

Realistic world simulators

Single world model across environments



Internet-Scale Dataset for World Modeling
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Yang, Walker, Parker-Holder, Du, Bruuce, Barreto, Abbeel, Schuurmans. Video as the New Language for Real-World Decision 

Making. ICML 2024.

Any time-aligned video-"action" data

Text-video pairs:

Time

A person cutting the pepper with a knife 
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Yang, Walker, Parker-Holder, Du, Bruuce, Barreto, Abbeel, Schuurmans. Video as the New Language for Real-World Decision 

Making. ICML 2024.

Any time-aligned video-"action" data

Camera control:

Time

Turn 360 degrees clockwise



Internet-Scale Dataset for World Modeling
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Yang, Walker, Parker-Holder, Du, Bruuce, Barreto, Abbeel, Schuurmans. Video as the New Language for Real-World Decision 

Making. ICML 2024.

Any time-aligned video-"action" data

Robot control:

Time

Δ𝑥, Δ𝑦 Δ𝑥, Δ𝑦



Internet-Scale Dataset for World Modeling
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Yang, Walker, Parker-Holder, Du, Bruuce, Barreto, Abbeel, Schuurmans. Video as the New Language for Real-World Decision 

Making. ICML 2024.

Any time-aligned video-"action" data

Keyboard control:

Time



Internet-Scale Dataset for World Modeling
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Any time-aligned video-"action" data

A person cutting the pepper with a knife 

Δ𝑥, Δ𝑦 Δ𝑥, Δ𝑦 Turn 360 degrees clockwise

Training data (21M video-"action” pairs)

Yang, Du, Ghasemipour, Tompson, Kaelbling, Schuurmans, Abbeel. Learning Interactive Real-World Simulators. ICLR 2024.



Scalable Video Generation Architectures
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Ho, et al. Video Diffusion Models. ICLR 2022. 

Peebles and Xie. Scalable Diffusion Models with Transformers. ICCV 2023.
Ho and Salimans. Classifier-Free Diffusion Guidance. NeurIPS 2021.
Ho*, Saharia*, et al. Cascaded Diffusion Models for High Fidelity Image Generation. JMLR 2022.

Ho, et al. Imagen Video: High Definition Video Generation with Diffusion Models. arXiv 2022.
Chen, et al. Next-token Prediction Meets Full-Sequence Diffusion. NeurIPS 2024.

Video diffusion models: 3D UNet (DiT/latent diffusion) 

Classifier-free guidance: Text conditioning

Model cascade: Temporal and spatial super-resolution

Image conditioning: Block-wise autoregressive rollouts



Action Conditioning

21

Question: How to represent continuous control actions?



Action Conditioning

22Quevedo, Liang, Yang. Evaluating Robot Policies in a World Model. arXiv 2025.

Question: How to represent continuous control actions?

● Use text embeddings (LLM, CLIP, T5), discretization

● Use the original continuous vector
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Scalable Video Generation Architectures
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Ho, et al. Video Diffusion Models. ICLR 2022. 

Peebles and Xie. Scalable Diffusion Models with Transformers. ICCV 2023.
Ho and Salimans. Classifier-Free Diffusion Guidance. NeurIPS 2021.
Ho*, Saharia*, et al. Cascaded Diffusion Models for High Fidelity Image Generation. JMLR 2022.

Ho, et al. Imagen Video: High Definition Video Generation with Diffusion Models. arXiv 2022.
Chen, et al. Next-token Prediction Meets Full-Sequence Diffusion. NeurIPS 2024.

Video diffusion models: 3D UNet (DiT/latent diffusion) 

Classifier-free guidance: Text conditioning

Model cascade: Temporal and spatial super-resolution

Image conditioning: Block-wise autoregressive rollouts

Action conditioning: Linear projection of raw continuous 

vectors



Examples – Try Yourself!

24
Yang, Du, Ghasemipour, Tompson, Kaelbling, Schuurmans, Abbeel. Learning Interactive Real-World Simulators. ICLR 2024.

Quevedo, Liang, Yang. Evaluating Robot Policies in a World Model. arXiv 2025.

universal-simulator.github.io

world-model-eval.github.io

5B, 512 TPUs, 20 days

600M, 

2 A100,
5 days
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Building world models
● Datasets and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies 

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents

Scaling data: time-aligned video-"action"



This Talk: Scaling World Models for Agents

26

Building world models
● Datasets and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies 

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents

Scaling data: time-aligned video-"action"



Planning in a World Model
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Problem: Learning control policies mapping from observation to action

Robot control

Policy

Open the top 

drawer



Planning in a World Model
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Prior approach: Learning one policy for each environment and each robot

Robot controlPolicy

Policy

Policy

No knowledge

sharing



Planning in a World Model
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Proposal: Text-to-video as a universal policy

Du*, Yang*, et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023

Robot controlPolicy

Inverse dynamics

Open the     

s drawer

Generated video
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Proposal: Text-to-video as a universal policy

Robot control

Policy

Inverse dynamics
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Proposal: Text-to-video as a universal policy

Robot control

Policy

Inverse dynamics



Planning in a World Model
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Proposal: Text-to-video as a universal policy

[1] Ko, et al. Learning to Act from Actionless Videos through Dense Correspondences. ICLR 2024. 

[2] Black, et al. Zero-Shot Robotic Manipulation with Pretrained Image-Editing Diffusion Models. ICLR 2024.

Robot control

Policy

Inverse dynamics

Optical flow [1]

Goal-conditioned policy [2]



Long Horizon Planning in a World Model
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Challenge: Hard to generate a complex step-by-step video in one go

Generate plans one step at a time

1) Open top drawer

2) Put banana in the top drawer

3) Put apple in the top drawer

4) Close top drawer



37Du, Yang, Florence, Xia, Wahid, Ichter, Sermanet, Yu, Abbeel, Tenenbaum, Kaelbling, Zeng, Tompson. Video Language Planning. 

ICLR 2024.

Long Horizon Planning in a World Model
Planning in the video and language space



Long Horizon Planning in a World Model
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Generated video Real-world execution

Du, Yang, Florence, Xia, Wahid, Ichter, Sermanet, Yu, Abbeel, Tenenbaum, Kaelbling, Zeng, Tompson. Video Language Planning. 

ICLR 2024.

Put all fruits in 

the top drawer
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Long Horizon Planning in a World Model

1) Move the red circle to the left of the yellow hexagon

2) Move the green circle closer to the red star

3) Move the blue triangle to the top left of the red circle

4) Move the blue cube to the left of the blue triangle

5) Move the green circle to the center

6) Push the green circle towards the yellow heart

7) Move the blue triangle to the right of the green circle

8) Slide the blue cube towards the blue triangle

9) Push the red circle closer to the blue cube

10) Move the yellow hexagon closer to the red circle

Generated video Real-world execution

Make a line



Evaluating Policies in a World Model
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How good is a policy     ?
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How good is a policy     ?

● Run on the real robot “My lab has 5 PhD students and 1 robot” “and the robot broke”
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How good is a policy     ?

● Run on the real robot

● Run in software simulator

“My lab has 5 PhD students and 1 robot” “and the robot broke”

Real world Software simulator

Poor correlation between simulated and real-world outcomes
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How good is a world model for policy evaluation?

Quevedo, Liang, Yang. Evaluating Robot Policies in a World Model. 2025.
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How good is a world model for policy evaluation?

Generated videoReal video

Quevedo, Liang, Yang. Evaluating Robot Policies in a World Model. 2025.

Li, et al. WorldEval: World Model as Real-World Robot Policies Evaluator. 2025

Same sequence of actions:



Generated rollout

Ground truth rollout

Evaluating Policies in a World Model
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How good is a world model for policy evaluation?

World 

model

Rollout

VLM 

reward

Ground 

truth env
Ground truth task success

Predicted 

task success

Agree?

Quevedo, Liang, Yang. Evaluating Robot Policies in a World Model. 2025.

Li, et al. WorldEval: World Model as Real-World Robot Policies Evaluator. 2025



Evaluating Policies in a World Model
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How good is a world model for policy evaluation?

Quevedo, Liang, Yang. Evaluating Robot Policies in a World Model. 2025.

Ground truth env

World model

Ground truth env

World model

In-distribution (data collection policy)

False negative

Out-of-distribution (noisy policy)

False positive



Evaluating Policies in a World Model
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Quevedo, Liang, Yang. Evaluating Robot Policies in a World Model. 2025.

How good is a world model for policy evaluation?

GeneratedGround truthGeneratedGround truth

In-distribution (data collection policy)

False negative

Out-of-distribution (noisy policy)

False positive



Improve Policies in a World Model
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We know how to improve policies in a simulator (Go, Atari, Starcraft)

Improve Policies in a World Model

50

to achieve super-human performance



Improve Policies in a World Model
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Rollout World 

model

Running RL (policy gradient) using rollouts from the world model

VLM 

reward

Yang, Du, Ghasemipour, Tompson, Kaelbling, Schuurmans, Abbeel. Learning Interactive Real-World Simulators. ICLR 2024.



Improve Policies in a World Model
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Yang, Du, Ghasemipour, Tompson, Kaelbling, Schuurmans, Abbeel. Learning Interactive Real-World Simulators. ICLR 2024.

Test in real worldTrain in world model

Push the red star 

towards the blue cube



Improve Policies in a World Model
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Kaelbling, Littman, Moore. Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research 1996.

Ha and Schmidhuber. Recurrent World Models Facilitate Policy Evolution. NeurIPS 2018.
Hafner, Lillicrap, Ba, Norouzi. Dream to Control: Learning Behaviors by Latent Imagination. ICLR 2020.
Kaiser, et al.  Model-Based Reinforcement Learning for Atari. ICLR 2020.

Test in real worldTrain in world model

Push the red star 

towards the blue cube

Algorithm itself is similar to model-based RL

Difference: Real-world tasks (beyond games)
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Building world models
● Datasets and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents

Scaling data: time-aligned video-"action"

Scaling computation: search, planning, rolling out in a real-world simulator
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Building world models
● Datasets and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents

Scaling data: time-aligned video-"action"

Scaling computation: search, planning, rolling out in a real-world simulator



Planning in a World Model
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Generated video Real-world execution

World model



Improving a World Model with Feedback
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Robot controlGenerated video

Real-world execution

World model

Soni*, Venkataraman*, Chandra*, Fischmeister, Liang, Dai, Yang. VideoAgent: Self-Improving Video Generation. 2025.

Feedback and 

more data
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Generated video

Real-world execution

Feedback

VLM 

reward
World model

Soni*, Venkataraman*, Chandra*, Fischmeister, Liang, Dai, Yang. VideoAgent: Self-Improving Video Generation. 2025.

Robot control

Feedback and 

more data



Improving a World Model with Feedback
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With VLM feedback:

● Training to self-correct

● Reinforcement learning for video generation (e.g., DPO)

Kumar, et al. Training Language Models to Self-Correct via Reinforcement Learning. ICLR 2025.

Chen, et al. Teaching Large Language Models to Self-Debug. ICLR 2024.
Soni*, Venkataraman*, Chandra*, Fischmeister, Liang, Dai, Yang. VideoAgent: Self-Improving Video Generation. 2025.
Furuta, Zen, Schuurmans, Faust, Matsuo, Liang, Yang. Improving Text-to-Video Generation with AI Feedback. 2025



Improving a World Model with Feedback
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With VLM feedback:

● Training to self-correct

● Reinforcement learning for video generation (e.g., DPO)

With execution feedback:

● Iterative learning and data generation (e.g., DAgger, STaR)

Ross, Gordon, Bagnell. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. AISTATS 2011.

Zelikman, Wu, Mu, Goodman. STaR: Bootstrapping Reasoning With Reasoning. NeurIPS 2022.
Soni*, Venkataraman*, Chandra*, Fischmeister, Liang, Dai, Yang. VideoAgent: Self-Improving Video Generation. 2025.
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Building world models
● Dataset and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents

Scaling feedback: AI and execution

Scaling data: time-aligned video-"action"

Scaling computation: search, planning, rolling out in a real-world simulator



Final Remarks
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Dream: Universal environment for agents
● Through computer vision

● Promise of generalization

Key: World models
● Useful signals from broad data

● Understand counterfactuals, simulate different outcomes

● Do long horizon planning (at different abstraction levels with language and video)

Think about safety
● Any video you see on a computer can be hijacked by a world mode

● Something to step up if we are going to use a world model to train general purpose agents
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Building world models
● Dataset and modeling

● Action conditioning

Using world models
● Long horizon planning

● Evaluating policies

● Training embodied agents

Improving world models
● RL for video generation

● Ground in the physical world through embodied agents

Scaling feedback: AI and execution

Scaling data: time-aligned video-"action"

Scaling computation: search, planning, rolling out in a real-world simulator
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